Fault Diagnosis Method Based on Kurtosis Wave and Information Divergence for Rolling Element Bearings
نویسندگان
چکیده
Fault diagnosis depends largely on feature analysis of vibration signals. However, feature extraction for fault diagnosis is difficult because the vibration signals often contain a strong noise component. Noises stronger than the actual fault signal may interfere with diagnosis and ultimately cause misdiagnosis. In order to extract the feature from a fault signal highly contaminated by the noise, and to accurately identify the fault types, a novel diagnosis method is proposed based on the kurtosis wave and information divergence for fault detection in a rolling element bearing. A kurtosis wave (KW) is defined in the time domain using the vibration signal, and a method for obtaining the kurtosis information wave (KIW) is also proposed based on KullbackLeibler (KL) divergence using the kurtosis wave. A practical example of diagnosis for an outer-race defect in a bearing is provided to verify the effectiveness of the proposed method. This paper also compares the proposed method with two envelope analysis techniques, namely the wavelet transformand the FFT-based envelope analysis techniques. The analyzed results show that the feature of a bearing defect is extracted clearly, and the bearing fault can be effectively identified using the proposed method. Key-Words: Fault Diagnosis, Rolling Element Bearing, Envelope Analysis, Kurtosis Wave, Information Divergence.
منابع مشابه
Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution
The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملFault Diagnosis of Rolling Bearings Based on EWT and KDEC
Abstract: This study proposes a novel fault diagnosis method that is based on empirical wavelet transform (EWT) and kernel density estimation classifier (KDEC), which can well diagnose fault type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root mean squa...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کامل